Polytopes with groups of type PGL2(q)

نویسندگان

  • Dimitri Leemans
  • Egon Schulte
چکیده

There exists just one regular polytope of rank larger than 3 whose full automorphism group is a projective general linear group PGL2(q), for some prime-power q. This polytope is the 4-simplex and the corresponding group is PGL2(5) ∼= S5.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groups of type L2(q) acting on polytopes

We prove that if G is a string C-group of rank 4 and G ∼= L2(q) with q a prime power, then q must be 11 or 19. The polytopes arising are Grünbaum’s 11-cell of type {3, 5, 3} for L2(11) and Coxeter’s 57-cell of type {5, 3, 5} for L2(19), each a locally projective regular 4-polytope.

متن کامل

On Generating Coset Representatives of PGL2(Fq) in PGL2(Fq2)

There are q+q right PGL2(Fq)−cosets in the group PGL2(Fq2). In this paper, we present a method of generating all the coset representatives, which runs in time Õ(q), thus achieves the optimal time complexity up to a constant factor. Our algorithm has applications in solving discrete logarithms and finding primitive elements in finite fields of small characteristic.

متن کامل

( 2 , m , n ) - groups with Euler characteristic equal to − 2 a s b Nick

We study those (2,m, n)-groups which are almost simple and for which the absolute value of the Euler characteristic is a product of two prime powers. All such groups which are not isomorphic to PSL2(q) or PGL2(q) are completely classified.

متن کامل

(2, m, n)-groups with Euler characteristic equal to -2asb

We study those (2,m, n)-groups which are almost simple and for which the absolute value of the Euler characteristic is a product of two prime powers. All such groups which are not isomorphic to PSL2(q) or PGL2(q) are completely classified.

متن کامل

Groups of Ree type in characteristic 3 acting on polytopes

Every Ree group R(q), with q 6= 3 an odd power of 3, is the automorphism group of an abstract regular polytope, and any such polytope is necessarily a regular polyhedron (a map on a surface). However, an almost simple group G with R(q) < G ≤ Aut(R(q)) is not a C-group and therefore not the automorphism group of an abstract regular polytope of any rank.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009